發表時間 文章標題 人氣 留言
2021-06-04 【webwork】 Chapter 11.5 solutions. For what values of p is the series convergent? ∑n=2∞(−1)n−1(lnn)pn3 For each of the following series, tell whether or not you can apply the 3-condition test (i.e. the alternating series test). Enter D if the series dive (3809) (0)
2021-06-04 【webwork】 Chapter 11.4 solutions. The series ∑n=1∞nkrn converges when 0<r<1 and diverges when r>1. This is true regardless of the value of the constant k. When r=1 the series is a p-series. It converges if k<−1 and diverges otherwise. Each of the series (3634) (0)
2021-06-04 【webwork】 Chapter 11.3 solutions. Use the Integral Test to determine whether the infinite series is convergent. ∑n=1∞87lnn Fill in the corresponding integrand and the value of the improper integral. Enter inf for ∞, -inf for −∞, and DNE if the limit does (3191) (0)
2021-06-04 【webwork】 Chapter 11.1 solutions. Determine whether the sequences are increasing, decreasing, or not monotonic. If increasing, enter I as your answer. If decreasing, enter D as your answer. If not monotonic, enter N as your answer. (2640) (0)
2021-06-03 【webwork】 Chapter 11.2 solutions. We might think that a ball that is dropped from a height of 11 feet and rebounds to a height 3/4 of its previous height at each bounce keeps bouncing forever since it takes infinitely many bounces. This is not true! We e (3734) (0)
2021-06-01 【webwork】 Chapter 15.4 solutions. The region R is bounded by the curves y=5x, y=8−x2, and the y-axis, and its mass density is δ(x,y)=xy. To find the center of gravity of the region you would compute ∫∫Rδ(x,y)dA=∫dc∫q(x)p(x)δ(x,y)dydx,∫dc∫q(x)p(x)xδ(x,y)d (2383) (0)
2021-05-28 【webwork】 Chapter 16.6 solutions. Find the surface area of that part of the plane 3x+2y+z=9 that lies inside the elliptic cylinder x236+y2100=1 For the surface with parametric equations r(s,t)=⟨st,s+t,s−t⟩, find the equation of the tangent plane at (2,3, (5266) (0)
2021-05-27 【webwork】 Chapter 16.7 solutions. Evaluate the surface integral ∫SF⋅ dS where F=⟨3x,−4z,4y⟩ and S is the part of the sphere x2+y2+z2=4 in the first octant, with orientation toward the origin. Evaluate the integral with respect to surface area ∫∫T18xdA, (7764) (0)
2021-05-26 【webwork】 Chapter 16.8 solutions. Use Stoke's Theorem to evaluate ∫CF⋅dr where F(x,y,z)=xi+yj+8(x2+y2)k and C is the boundary of the part of the paraboloid where z=25−x2−y2 which lies above the xy-plane and C is oriented counterclockwise when viewed from (5550) (0)
2021-05-26 【開箱】Kirkland Signature Nut Bars. 科克蘭黑巧克力堅果棒. 開箱文. 健身食品. 營養點心. 堅果. Costco必買. 好市多推薦. (748) (1)
2021-05-26 【webwork】 Chapter 16.9 solutions. Let div F⃗ =x2+y2+z2+1. Calculate ∫S1F⃗ ⋅dA⃗ where S1 is the sphere of radius 1 centered at the origin. Use the divergence theorem to calculate the flux of the vector field F⃗ (x,y,z)=x4i⃗ +(3y−4x3y)j⃗ +2zk⃗ through th (4956) (0)
2021-05-17 【webwork】 Chapter 16.5 solutions. For each of the following vector fields, find its curl and determine if it is a gradient field. Let f(x,y)=axy+ax2y+y3.webwork (2598) (0)
2021-05-17 【webwork】 Chapter 16.4 solutions. Let F⃗ =14xeyi⃗ +7x2eyj⃗ and G⃗ =14(x−y)i⃗ +7(x+y)j⃗ . Let C be the path consisting of lines from (0,0) to (3,0) to (3,2) to (0,0). Find each of the following integrals exactly:Use Green's Theorem to evaluate the line i (3686) (0)
2021-05-16 【webwork】 Chapter 16.3 solutions. For each of the following decide whether the vector field could be a gradient vector field. Be sure that you can justify your answer.aUse the Fundamental Theorem of Line Integrals to calculate ∫CF⃗ ⋅dr⃗ exactly, if F⃗ =2 (4680) (1)
2021-05-14 【webwork】 Chapter 16.2 solutions. Find the line integral with respect to arc length ∫C(5x+6y)ds, where C is the line segment in the xy-plane with endpoints P=(8,0) and Q=(0,6). Find the line integral with respect to arc length ∫C(5x+6y)ds, where C is the (2960) (0)
2021-05-14 【webwork】 Chapter 16.1 solutions. Each vector field shown is the gradient of a function f(x,y). Match the gradient field of each function to the contour plot of that function. Match each vector field with its graph. (798) (0)
2021-03-14 【Assembly】ATmega 328p is a single-chip microcontroller. It is usually used in basic Arduino boards. For example, Arduino UNO, Arduino Pro Mini and Arduino Nano. Now, try to write an assembly language program for an ATmega328P. In this circuit, a (112) (0)
2021-03-01 【高雄】打狗領事館.還去西子灣看夕陽嗎?西子灣隱藏夕陽景點.外國人來台都到這裡祈福.大人小孩老人皆宜的拍照打卡聖地.高雄旅遊勝地.網美必去的打卡勝地.中山大學.西子灣旅遊 (248) (1)
2021-02-28 【台中】「再睡五分鐘」滴妹飲料店.一中街.一中店.台中一中旁.水利大樓.停車場.乘車資訊.公車.網美飲料店.NAP TEA.附菜單 (214) (1)
2021-02-16 【台北】中山爵士廣場.中山站線形公園.台北浪漫景點.告白景點.LED星空.雙連站.中山站.浪漫LED燈光拱橋.中山光廊.星橋綠坡.星光天橋.捷運雙連站.捷運中山站 (291) (2)
2021-02-16 【台中】O八韓食.台中韓式料理.韓式鍋粑.最好吃韓式炸雞.原味部隊鍋.魷魚辣炒年糕.Korean creative cuisine.福科韓式料理 (157) (3)
2021-02-16 【台中】機車考照全攻略.台中區監理所.持汽車駕照考取機車駕照.機車考照流程.機車考照費用.考機車需要帶甚麼.機車考照大全.路考.筆試.考照時間.機車考照秘訣.tips.obtaining a scooter driver's license in Taiwan.Taichung motor vehicles office (2686) (2)
2021-02-16 【高雄】黑浮咖啡高美店. RÊVE Café.需定位.鐵觀音鬆餅.夢咖啡廳.夢.高檔早午餐.網美咖啡店.起司薄餅.燉牛肉.燉飯.義大利麵.氣氛好的咖啡廳.適合家庭聚餐.高雄咖啡廳 (235) (2)
2021-02-16 【高雄 西子灣】中山大學美食.大碗公冰·甜品(西子灣創始店).大碗公冰.雪花冰.剉冰.冬天也吃得到芒果冰 (673) (4)
«123