close

image

image

image

image

image

Find the most general antiderivative of f(x)=2x341x43.f(x)=2x34−1x43.

Note: Any arbitrary constants used must be an upper-case "C".

F(x)=F(x)= 

 

Find ff if f(x)=2cos(x)+sec2(x),π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=3.f(π/3)=−3.

f(x)=f(x)= 

 

Below in A-F are three functions and graphs of three other functions. The graphs of antiderivatives for four of these functions/graphs are shown in questions 1-4. Match each antiderivative graph in questions 1-4 with the corresponding function/graph in A-F.


A. 
B. 
C. 
D. f(x)=2x3xf(x)=2x−3x
E. f(x)=sin(x2)f(x)=sin⁡(x2)
F. f(x)=1/(x4+1)f(x)=1/(x4+1)
arrow
arrow
    創作者介紹

    Josephood7 發表在 痞客邦 留言(0) 人氣()